首页> 外文OA文献 >Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!
【2h】

Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!

机译:Poole-Frenkel效应是薄氧化膜中的主导电流机制-一种错觉?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many of the publications, over 50 per year for the last five years, the Poole-Frenkel-effect (PFE) is identified or suggested as dominating current mechanism to explain measured current–electric field dependencies in metal-insulator-metal (MIM) thin film stacks. Very often, the insulating thin film is a metal oxide as this class of materials has many important applications, especially in information technology. In the overwhelming majority of the papers, the identification of the PFE as dominating current mechanism is made by the slope of the current–electric field curve in the so-called Poole-Frenkel plot, i.e., logarithm of current density, j, divided by the applied electric field, F, versus the square root of that field. This plot is suggested by the simplest current equation for the PFE, which comprises this proportionality (ln(j/F) vs. F 1/2) leading to a straight line in this plot. Only one other parameter (except natural constants) may influence this slope: the optical dielectric constant of the insulating film. In order to identify the importance of the PFE simulation studies of the current through MIM stacks with thin insulating films were performed and the current–electric field curves without and with implementation of the PFE were compared. For the simulation, an advanced current model has been used combining electronic carrier injection/ejection currents at the interfaces, described by thermionic emission, with the carrier transport in the dielectric, described by drift and diffusion of electrons and holes in a wide band gap semiconductor. Besides the applied electric field (or voltage), many other important parameters have been varied: the density of the traps (with donor- and acceptor-like behavior); the zero-field energy level of the traps within the energy gap, this energy level is changed by the PFE (also called internal Schottky effect); the thickness of the dielectric film; the permittivity of the dielectric film simulating different oxide materials; the barriers for electrons and holes at the interfaces simulating different electrode materials; the temperature. The main results and conclusions are: (1) For a single type of trap present only (donor-like or acceptor-like), none of the simulated current density curves shows the expected behavior of the PFE and in most cases within the tested parameter field the effect of PFE is negligibly small. (2) For both types of traps present (compensation) only in the case of exact compensation, the expected slope in the PF-plot was nearly found for a wider range of the applied electric field, but for a very small range of the tested parameter field because of the very restricting additional conditions: first, the quasi-fermi level of the current controlling particle (electrons or holes) has to be 0.1 to 0.5 eV closer to the respective band limit than the zero-field energy level of the respective traps and, second, the compensating trap energy level has to be shallow. The conclusion from all these results is: the observation of the PFE as dominating current mechanism in MIM stacks with thin dielectric (oxide) films (typically 30 nm) is rather improbable!
机译:在许多出版物中,过去五年中每年超过50种出版物,普尔-弗伦克尔效应(PFE)被确定或建议为主导电流机制,以解释金属-绝缘体-金属(MIM)中测得的电流-电场依赖性薄膜堆栈。绝缘薄膜通常是金属氧化物,因为这类材料具有许多重要的应用,尤其是在信息技术中。在绝大多数论文中,通过所谓的Poole-Frenkel图中的电流-电场曲线的斜率(即电流密度的对数j除以)确定PFE是主导电流机制。施加的电场F相对于该电场的平方根。该图由PFE的最简单电流方程式建议,该方程式包括该比例(ln(j / F)与F 1/2),导致该图中的直线。只有一个其他参数(自然常数除外)可能会影响该斜率:绝缘膜的光学介电常数。为了确定PFE仿真的重要性,对带有薄绝缘膜的MIM堆叠中的电流进行了研究,并对不使用PFE和使用PFE的电流-电场曲线进行了比较。为了进行仿真,已经使用了先进的电流模型,该模型结合了界面处的电子载流子注入/注入电流(通过热电子发射描述)与载流子在电介质中的传输(通过宽带隙半导体中电子和空穴的漂移和扩散描述) 。除了施加的电场(或电压)外,还改变了许多其他重要参数:陷阱的密度(具有类似施主和受主的行为);能隙内陷阱的零场能级,该能级由PFE改变(也称为内部肖特基效应);介电膜的厚度;模拟不同氧化物材料的介电膜的介电常数;模拟界面材料的界面处电子和空穴的势垒;温度。主要结果和结论是:(1)对于仅存在一种类型的陷阱(类似于给体或类似受体),没有模拟的电流密度曲线显示出PFE的预期行为,并且在大多数情况下都处于测试参数范围内在现场,PFE的影响很小。 (2)对于两种存在的陷阱(仅在进行精确补偿的情况下),在较宽的施加电场范围内几乎都能找到PF图中的预期斜率,但在很小的测试范围内由于附加条件的限制非常严格:首先,电流控制粒子(电子或空穴)的准费米能级必须比各自的带限比各自的零场能级更接近0.1至0.5 eV陷阱,其次,补偿陷阱的能级必须很浅。从所有这些结果得出的结论是:在带有薄介电(氧化物)膜(通常为30)nm)的MIM堆叠中,观察到PFE是主导电流机制是非常不可能的!

著录项

  • 作者

    Schroeder, Herbert;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号